دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Koki Saitoh
سری:
ISBN (شابک) : 9781800206137, 1000000000
ناشر: Packt Publishing Pvt. Ltd.
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : MOBI (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Deep Learning from the Basics (2021) [Saitoh] [9781800206137] به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق از مبانی (2021) [Saitoh] [9781800206137] نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover FM Copyright Table of Contents Preface Introduction Chapter 1: Introduction to Python What is Python? Installing Python Python Versions External Libraries That We Use Anaconda Distribution Python Interpreter Mathematical Operations Data Types Variables Lists Dictionaries Boolean if Statements for Statements Functions Python Script Files Saving in a File Classes NumPy Importing NumPy Creating a NumPy Array Mathematical Operations in NumPy N-Dimensional NumPy Arrays Broadcasting Accessing Elements Matplotlib Drawing a Simple Graph Features of pyplot Displaying Images Summary Chapter 2: Perceptrons What Is a Perceptron? Simple Logic Circuits AND Gate NAND and OR gates Implementing Perceptrons Easy Implementation Introducing Weights and Bias Implementation with Weights and Bias Limitations of Perceptrons XOR Gate Linear and Nonlinear Multilayer Perceptrons Combining the Existing Gates Implementing an XOR Gate From NAND to a Computer Summary Chapter 3: Neural Networks From Perceptrons to Neural Networks Neural Network Example Reviewing the Perceptron Introducing an Activation Function Activation Function Sigmoid Function Implementing a Step Function Step Function Graph Implementing a Sigmoid Function Comparing the Sigmoid Function and the Step Function Nonlinear Function ReLU Function Calculating Multidimensional Arrays Multidimensional Arrays Matrix Multiplication Matrix Multiplication in a Neural Network Implementing a Three-Layer Neural Network Examining the Symbols Implementing Signal Transmission in Each Layer Implementation Summary Designing the Output Layer Identity Function and Softmax Function Issues when Implementing the Softmax Function Characteristics of the Softmax Function Number of Neurons in the Output Layer Handwritten Digit Recognition MNIST Dataset Inference for Neural Network Batch Processing Summary Chapter 4: Neural Network Training Learning from Data Data-Driven Training Data and Test Data Loss Function Sum of Squared Errors Cross-Entropy Error Mini-Batch Learning Implementing Cross-Entropy Error (Using Batches) Why Do We Configure a Loss Function? Numerical Differentiation Derivative Examples of Numerical Differentiation Partial Derivative Gradient Gradient Method Gradients for a Neural Network Implementing a Training Algorithm A Two-Layer Neural Network as a Class Implementing Mini-Batch Training Using Test Data for Evaluation Summary Chapter 5: Backpropagation Computational Graphs Using Computational Graphs to Solve Problems Local Calculation Why Do We Use Computational Graphs? Chain Rule Backward Propagation in a Computational Graph What Is the Chain Rule? The Chain Rule and Computational Graphs Backward Propagation Backward Propagation in an Addition Node Backward Propagation in a Multiplication Node Apples Example Implementing a Simple Layer Implementing a Multiplication Layer Implementing an Addition Layer Implementing the Activation Function Layer ReLU Layer Sigmoid Layer Implementing the Affine and Softmax Layers Affine Layer Batch-Based Affine Layer Softmax-with-Loss Layer Implementing Backpropagation Overall View of Neural Network Training Presupposition Implementing a Neural Network That Supports Backpropagation Gradient Check-in Backpropagation Training Using Backpropagation Summary Chapter 6: Training Techniques Updating Parameters Story of an Adventurer SGD Disadvantage of SGD Momentum AdaGrad Adam Which Update Technique Should We Use? Using the MNIST Dataset to Compare the Update Techniques Initial Weight Values How About Setting the Initial Weight Values to 0? Distribution of Activations in the Hidden Layers Initial Weight Values for ReLU Using the MNIST Dataset to Compare the Weight Initializers Batch Normalization Batch Normalization Algorithm Evaluating Batch Normalization Regularization Overfitting Weight Decay Dropout Validating Hyperparameters Validation Data Optimizing Hyperparameters Implementing Hyperparameter Optimization Summary Chapter 7: Convolutional Neural Networks Overall Architecture The Convolution Layer Issues with the Fully Connected Layer Convolution Operations Padding Stride Performing a Convolution Operation on Three-Dimensional Data Thinking in Blocks Batch Processing The Pooling Layer Characteristics of a Pooling Layer Implementing the Convolution and Pooling Layers Four-Dimensional Arrays Expansion by im2col Implementing a Convolution Layer Implementing a Pooling Layer Implementing a CNN Visualizing a CNN Visualizing the Weight of the First Layer Using a Hierarchical Structure to Extract Information Typical CNNs LeNet AlexNet Summary Chapter 8: Deep Learning Making a Network Deeper Deeper Networks Improving Recognition Accuracy Motivation for a Deeper Network A Brief History of Deep Learning ImageNet VGG GoogLeNet ResNet Accelerating Deep Learning Challenges to Overcome Using GPUs for Acceleration Distributed Training Reducing the Bit Number for Arithmetic Precision Practical Uses of Deep Learning Object Detection Segmentation Generating Image Captions The Future of Deep Learning Converting Image Styles Generating Images Automated Driving Deep Q-Networks (Reinforcement Learning) Summary Appendix A Index